Extensions 1→N→G→Q→1 with N=C38 and Q=C23

Direct product G=N×Q with N=C38 and Q=C23
dρLabelID
C23×C38304C2^3xC38304,42

Semidirect products G=N:Q with N=C38 and Q=C23
extensionφ:Q→Aut NdρLabelID
C38⋊C23 = C23×D19φ: C23/C22C2 ⊆ Aut C38152C38:C2^3304,41

Non-split extensions G=N.Q with N=C38 and Q=C23
extensionφ:Q→Aut NdρLabelID
C38.1C23 = C2×Dic38φ: C23/C22C2 ⊆ Aut C38304C38.1C2^3304,27
C38.2C23 = C2×C4×D19φ: C23/C22C2 ⊆ Aut C38152C38.2C2^3304,28
C38.3C23 = C2×D76φ: C23/C22C2 ⊆ Aut C38152C38.3C2^3304,29
C38.4C23 = D765C2φ: C23/C22C2 ⊆ Aut C381522C38.4C2^3304,30
C38.5C23 = D4×D19φ: C23/C22C2 ⊆ Aut C38764+C38.5C2^3304,31
C38.6C23 = D42D19φ: C23/C22C2 ⊆ Aut C381524-C38.6C2^3304,32
C38.7C23 = Q8×D19φ: C23/C22C2 ⊆ Aut C381524-C38.7C2^3304,33
C38.8C23 = D76⋊C2φ: C23/C22C2 ⊆ Aut C381524+C38.8C2^3304,34
C38.9C23 = C22×Dic19φ: C23/C22C2 ⊆ Aut C38304C38.9C2^3304,35
C38.10C23 = C2×C19⋊D4φ: C23/C22C2 ⊆ Aut C38152C38.10C2^3304,36
C38.11C23 = D4×C38central extension (φ=1)152C38.11C2^3304,38
C38.12C23 = Q8×C38central extension (φ=1)304C38.12C2^3304,39
C38.13C23 = C4○D4×C19central extension (φ=1)1522C38.13C2^3304,40

׿
×
𝔽